12 CHAPTER 12: LIMITED DEPENDENT VARIABLE MODELS

12.1 Probit and Logit Models (Page 586)

library(foreign) 
data = read.dta("Dataset/msc_fail.dta")
data=na.omit(data)
probit = glm(Fail~Age+English+Female+WorkExperience+Agrade+BelowBGrade+PGDegree+
               Year2004+Year2005+Year2006+Year2007,data,family=binomial("probit"))
summary(probit)
## 
## Call:
## glm(formula = Fail ~ Age + English + Female + WorkExperience + 
##     Agrade + BelowBGrade + PGDegree + Year2004 + Year2005 + Year2006 + 
##     Year2007, family = binomial("probit"), data = data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2066  -0.5872  -0.4269  -0.2792   2.6302  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -1.287212   0.583782  -2.205  0.02746 * 
## Age             0.005677   0.020910   0.272  0.78601   
## English        -0.093792   0.154685  -0.606  0.54429   
## Female         -0.194107   0.185278  -1.048  0.29480   
## WorkExperience -0.318247   0.156118  -2.039  0.04150 * 
## Agrade         -0.538813   0.235001  -2.293  0.02186 * 
## BelowBGrade     0.341802   0.215586   1.585  0.11286   
## PGDegree        0.132957   0.229911   0.578  0.56306   
## Year2004        0.349664   0.255411   1.369  0.17099   
## Year2005       -0.108329   0.289379  -0.374  0.70814   
## Year2006        0.673613   0.245478   2.744  0.00607 **
## Year2007        0.433786   0.257441   1.685  0.09199 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 393.92  on 499  degrees of freedom
## Residual deviance: 358.91  on 488  degrees of freedom
## AIC: 382.91
## 
## Number of Fisher Scoring iterations: 6
logit = glm(Fail~Age+English+Female+WorkExperience+Agrade+BelowBGrade+PGDegree+
               Year2004+Year2005+Year2006+Year2007,data,family=binomial)
summary(logit)
## 
## Call:
## glm(formula = Fail ~ Age + English + Female + WorkExperience + 
##     Agrade + BelowBGrade + PGDegree + Year2004 + Year2005 + Year2006 + 
##     Year2007, family = binomial, data = data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2275  -0.5870  -0.4228  -0.2980   2.5579  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -2.25637    1.07300  -2.103  0.03548 * 
## Age             0.01101    0.03813   0.289  0.77275   
## English        -0.16512    0.28295  -0.584  0.55952   
## Female         -0.33389    0.34923  -0.956  0.33902   
## WorkExperience -0.56877    0.28847  -1.972  0.04865 * 
## Agrade         -1.08503    0.49110  -2.209  0.02715 * 
## BelowBGrade     0.56235    0.37351   1.506  0.13217   
## PGDegree        0.21208    0.41990   0.505  0.61350   
## Year2004        0.65321    0.50092   1.304  0.19223   
## Year2005       -0.18382    0.58794  -0.313  0.75454   
## Year2006        1.24658    0.47365   2.632  0.00849 **
## Year2007        0.85042    0.49705   1.711  0.08710 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 393.92  on 499  degrees of freedom
## Residual deviance: 359.43  on 488  degrees of freedom
## AIC: 383.43
## 
## Number of Fisher Scoring iterations: 5

12.2 Figure 12.4 Fitted values from the failure probit regression (Page 587)

par(mfcol = c(1,1), oma = c(0,0,1,0) + 0.2, mar = c(0,1,0,0) + 1, mgp = c(0, 0.2, 0))
plot(probit$fitted.values,type="l",las=1,xlab="",ylab="",main="",xaxs="i",yaxs="i",tck=.02,col="navy",ylim=c(0,0.6))

12.3 Marginal effects for logit and probit models (Page 588)

library(margins)
margins(logit)
##       Age  English   Female WorkExperience  Agrade BelowBGrade PGDegree Year2004 Year2005
##  0.001186 -0.01779 -0.03597       -0.06127 -0.1169     0.06058  0.02285  0.07036  -0.0198
##  Year2006 Year2007
##    0.1343  0.09161
margins(probit)
##       Age  English   Female WorkExperience  Agrade BelowBGrade PGDegree Year2004 Year2005
##  0.001118 -0.01847 -0.03822       -0.06267 -0.1061      0.0673  0.02618  0.06885 -0.02133
##  Year2006 Year2007
##    0.1326  0.08542