INTRODUCTORY ECONOMETRICS – REPLICATING EXAMPLES
Chapter 15 Instrumental Variables & 2SLS – Examples
------------------------------------------------------------------------------------- name: SN log: ~Wooldridge\intro-econx\iexample15.smcl log type: smcl opened on: 17 Jan 2019, 16:10:54 . ********************************************** . * Solomon Negash - Replicating Examples . * Wooldridge (2016). Introductory Econometrics: A Modern Approach. 6th ed. . * STATA Program, version 15.1. . * . * CHAPTER 15 Instrumental Variables Estimation and Two Stage Least Squares . * Computer Exercises (Examples) . ******************** SETUP ********************* . *Example 15.1. Estimating the Return to Education for Married Women . u mroz, clear . reg lwage educ Source | SS df MS Number of obs = 428 -------------+---------------------------------- F(1, 426) = 56.93 Model | 26.3264193 1 26.3264193 Prob > F = 0.0000 Residual | 197.001022 426 .462443713 R-squared = 0.1179 -------------+---------------------------------- Adj R-squared = 0.1158 Total | 223.327441 427 .523015084 Root MSE = .68003 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .1086487 .0143998 7.55 0.000 .0803451 .1369523 _cons | -.1851968 .1852259 -1.00 0.318 -.5492673 .1788736 ------------------------------------------------------------------------------ . reg educ fathedu Source | SS df MS Number of obs = 753 -------------+---------------------------------- F(1, 751) = 182.81 Model | 765.465719 1 765.465719 Prob > F = 0.0000 Residual | 3144.57412 751 4.18718259 R-squared = 0.1958 -------------+---------------------------------- Adj R-squared = 0.1947 Total | 3910.03984 752 5.19952106 Root MSE = 2.0463 ------------------------------------------------------------------------------ educ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fatheduc | .2824277 .0208884 13.52 0.000 .2414211 .3234343 _cons | 9.799013 .1985373 49.36 0.000 9.409259 10.18877 ------------------------------------------------------------------------------ . ivreg lwage (educ=fathedu) Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 428 -------------+---------------------------------- F(1, 426) = 2.84 Model | 20.8673606 1 20.8673606 Prob > F = 0.0929 Residual | 202.46008 426 .475258404 R-squared = 0.0934 -------------+---------------------------------- Adj R-squared = 0.0913 Total | 223.327441 427 .523015084 Root MSE = .68939 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0591735 .0351418 1.68 0.093 -.0098994 .1282463 _cons | .4411034 .4461018 0.99 0.323 -.4357312 1.317938 ------------------------------------------------------------------------------ Instrumented: educ Instruments: fatheduc ------------------------------------------------------------------------------ . *Example 15.2. Estimating the Return to Education for Men . u wage2, clear . reg educ sibs Source | SS df MS Number of obs = 935 -------------+---------------------------------- F(1, 933) = 56.67 Model | 258.055048 1 258.055048 Prob > F = 0.0000 Residual | 4248.7642 933 4.55387374 R-squared = 0.0573 -------------+---------------------------------- Adj R-squared = 0.0562 Total | 4506.81925 934 4.82528828 Root MSE = 2.134 ------------------------------------------------------------------------------ educ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- sibs | -.2279164 .0302768 -7.53 0.000 -.287335 -.1684979 _cons | 14.13879 .1131382 124.97 0.000 13.91676 14.36083 ------------------------------------------------------------------------------ . ivreg lwage (educ=sibs) Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 935 -------------+---------------------------------- F(1, 933) = 21.59 Model | -1.51973315 1 -1.51973315 Prob > F = 0.0000 Residual | 167.176016 933 .179181154 R-squared = . -------------+---------------------------------- Adj R-squared = . Total | 165.656283 934 .177362188 Root MSE = .4233 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .1224326 .0263506 4.65 0.000 .0707194 .1741459 _cons | 5.130026 .3551712 14.44 0.000 4.432999 5.827053 ------------------------------------------------------------------------------ Instrumented: educ Instruments: sibs ------------------------------------------------------------------------------ . reg lwage edu, nohead ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0598392 .0059631 10.03 0.000 .0481366 .0715418 _cons | 5.973063 .0813737 73.40 0.000 5.813366 6.132759 ------------------------------------------------------------------------------ . *Example 15.3. Estimating the Effect of Smoking on Birth Weight . u bwght, clear . reg packs cigprice Source | SS df MS Number of obs = 1,388 -------------+---------------------------------- F(1, 1386) = 0.13 Model | .011648626 1 .011648626 Prob > F = 0.7179 Residual | 123.684481 1,386 .089238442 R-squared = 0.0001 -------------+---------------------------------- Adj R-squared = -0.0006 Total | 123.696129 1,387 .089182501 Root MSE = .29873 ------------------------------------------------------------------------------ packs | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cigprice | .0002829 .000783 0.36 0.718 -.0012531 .0018188 _cons | .0674257 .1025384 0.66 0.511 -.1337215 .2685728 ------------------------------------------------------------------------------ . ivreg lbwght (packs=cigprice) Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 1,388 -------------+---------------------------------- F(1, 1386) = 0.12 Model | -1171.28207 1 -1171.28207 Prob > F = 0.7312 Residual | 1221.70241 1,386 .881459168 R-squared = . -------------+---------------------------------- Adj R-squared = . Total | 50.4203336 1,387 .036352079 Root MSE = .93886 ------------------------------------------------------------------------------ lbwght | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- packs | 2.988676 8.698888 0.34 0.731 -14.07573 20.05309 _cons | 4.448136 .9081552 4.90 0.000 2.666629 6.229644 ------------------------------------------------------------------------------ Instrumented: packs Instruments: cigprice ------------------------------------------------------------------------------ . *Example 15.4. Using College Proximity as an IV for Education . u card, clear . qui reg educ nearc4 exper expersq black smsa south smsa66 reg6* . display "Constant = " _[_cons] ", b1 = " _b[nearc4] ", b2 = " _b[exper] Constant = 1, b1 = .31989894, b2 = -.41253338 . eststo OLS: qui reg lwage educ exper* black smsa south smsa66 reg6* . eststo IV: qui ivreg lwage (educ=nearc4) exper* black smsa south smsa66 reg6* . estout, cells(b(nostar fmt(3)) se(par fmt(3))) stats(r2 N, fmt(%9.3f %9.0g) labels( /// R-squared Observations)) varlabels(_cons constant) varwidth(20) ti("Table 15.1 /// Dependent Variable: (lwage)") Table 15.1 Dependent Variable: (lwage) ---------------------------------------------- OLS IV b/se b/se ---------------------------------------------- educ 0.075 0.132 (0.003) (0.055) exper 0.085 0.108 (0.007) (0.024) expersq -0.002 -0.002 (0.000) (0.000) black -0.199 -0.147 (0.018) (0.054) smsa 0.136 0.112 (0.020) (0.032) south -0.148 -0.145 (0.026) (0.027) smsa66 0.026 0.019 (0.019) (0.022) reg661 0.056 0.083 (0.051) (0.059) reg662 0.153 0.184 (0.044) (0.055) reg663 0.201 0.231 (0.043) (0.054) reg664 0.112 0.133 (0.049) (0.055) reg665 0.184 0.229 (0.049) (0.067) reg666 0.197 0.246 (0.052) (0.072) reg667 0.174 0.218 (0.052) (0.068) reg668 0.000 0.000 (.) (.) reg669 0.175 0.191 (0.046) (0.051) constant 4.564 3.583 (0.079) (0.951) ---------------------------------------------- R-squared 0.300 0.238 Observations 3010 3010 ---------------------------------------------- . est clear . *Example 15.5. Return to Education for Working Women . u mroz, clear . qui reg educ exper* fatheduc motheduc . test fatheduc motheduc ( 1) fatheduc = 0 ( 2) motheduc = 0 F( 2, 748) = 124.76 Prob > F = 0.0000 . ivreg lwage (educ=fatheduc motheduc) exper* Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 428 -------------+---------------------------------- F(3, 424) = 8.14 Model | 30.3074256 3 10.1024752 Prob > F = 0.0000 Residual | 193.020015 424 .455235885 R-squared = 0.1357 -------------+---------------------------------- Adj R-squared = 0.1296 Total | 223.327441 427 .523015084 Root MSE = .67471 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0613966 .0314367 1.95 0.051 -.0003945 .1231878 exper | .0441704 .0134325 3.29 0.001 .0177679 .0705729 expersq | -.000899 .0004017 -2.24 0.026 -.0016885 -.0001094 _cons | .0481003 .4003281 0.12 0.904 -.7387744 .834975 ------------------------------------------------------------------------------ Instrumented: educ Instruments: exper expersq fatheduc motheduc ------------------------------------------------------------------------------ . qui reg lwage educ exper* . display "b1 = " _b[educ] b1 = .10748964 . *Example 15.6. Using Two Test Scores as Indicators of Ability . u wage2, clear . ivreg lwage educ exper tenure married south urban black (IQ=KWW) Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 935 -------------+---------------------------------- F(8, 926) = 36.96 Model | 31.4665121 8 3.93331401 Prob > F = 0.0000 Residual | 134.189771 926 .14491336 R-squared = 0.1900 -------------+---------------------------------- Adj R-squared = 0.1830 Total | 165.656283 934 .177362188 Root MSE = .38067 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- IQ | .0130473 .0049341 2.64 0.008 .0033641 .0227305 educ | .0250321 .0166068 1.51 0.132 -.0075591 .0576234 exper | .01442 .0033208 4.34 0.000 .0079029 .0209371 tenure | .0104562 .0026012 4.02 0.000 .0053512 .0155612 married | .2006903 .0406775 4.93 0.000 .1208595 .2805211 south | -.0515532 .0311279 -1.66 0.098 -.1126426 .0095361 urban | .1767058 .0282117 6.26 0.000 .1213394 .2320722 black | -.0225612 .0739597 -0.31 0.760 -.1677093 .1225869 _cons | 4.592453 .3257807 14.10 0.000 3.953099 5.231807 ------------------------------------------------------------------------------ Instrumented: IQ Instruments: educ exper tenure married south urban black KWW ------------------------------------------------------------------------------ . *Example 15.7. Return to Education for Working Women . u mroz, clear . qui reg educ exper* fatheduc motheduc if inlf==1 . predict v2, res . ivreg lwage (educ=fatheduc motheduc) exper* v2 Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 428 -------------+---------------------------------- F(4, 423) = 20.50 Model | 36.2573098 4 9.06432745 Prob > F = 0.0000 Residual | 187.070131 423 .442246173 R-squared = 0.1624 -------------+---------------------------------- Adj R-squared = 0.1544 Total | 223.327441 427 .523015084 Root MSE = .66502 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0613966 .0309849 1.98 0.048 .000493 .1223003 exper | .0441704 .0132394 3.34 0.001 .0181471 .0701937 expersq | -.000899 .0003959 -2.27 0.024 -.0016772 -.0001208 v2 | .0581666 .0348073 1.67 0.095 -.0102502 .1265834 _cons | .0481003 .3945753 0.12 0.903 -.7274721 .8236727 ------------------------------------------------------------------------------ Instrumented: educ Instruments: exper expersq v2 fatheduc motheduc ------------------------------------------------------------------------------ . qui reg lwage educ exper* . display "The OLS estimate is " _b[educ] " (" _se[educ] ")" The OLS estimate is .10748964 (.01414648) . *Example 15.8. Return to Education for Working Women . u mroz, clear . qui ivreg lwage (educ=fatheduc motheduc) exper* . predict u1, res (325 missing values generated) . reg u1 exper* fatheduc motheduc Source | SS df MS Number of obs = 428 -------------+---------------------------------- F(4, 423) = 0.09 Model | .170503136 4 .042625784 Prob > F = 0.9845 Residual | 192.84951 423 .455909007 R-squared = 0.0009 -------------+---------------------------------- Adj R-squared = -0.0086 Total | 193.020013 427 .452037502 Root MSE = .67521 ------------------------------------------------------------------------------ u1 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | -.0000183 .0133291 -0.00 0.999 -.0262179 .0261813 expersq | 7.34e-07 .0003985 0.00 0.999 -.0007825 .000784 fatheduc | .0057823 .0111786 0.52 0.605 -.0161902 .0277547 motheduc | -.0066065 .0118864 -0.56 0.579 -.0299704 .0167573 _cons | .0109641 .1412571 0.08 0.938 -.2666892 .2886173 ------------------------------------------------------------------------------ . display "N*Rsquared =" e(r2)*e(N) N*Rsquared =.37807138 . qui ivreg lwage (educ=fatheduc motheduc huseduc) exper* . predict u1_h, res (325 missing values generated) . qui reg u1_h exper* fatheduc motheduc huseduc . display "N*Rsquared =" e(r2)*e(N) N*Rsquared =1.115043 . qui ivreg lwage (educ=fatheduc motheduc huseduc) exper* . display "The IV estimate using all three instruments is " _b[educ] " (" _se[educ] ")" The IV estimate using all three instruments is .08039176 (.02177397) . qui ivreg lwage (educ=fatheduc motheduc) exper* . display "The IV estimate using two instruments is " _b[educ] " (" _se[educ] ")" The IV estimate using two instruments is .06139663 (.0314367) . *Example 15.9. Effect of Education on Fertility . u fertil1, clear . ivreg kids (educ=meduc feduc) age agesq black-y84 Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 1,129 -------------+---------------------------------- F(17, 1111) = 7.72 Model | 395.36632 17 23.2568424 Prob > F = 0.0000 Residual | 2690.14298 1,111 2.42137082 R-squared = 0.1281 -------------+---------------------------------- Adj R-squared = 0.1148 Total | 3085.5093 1,128 2.73538059 Root MSE = 1.5561 ------------------------------------------------------------------------------ kids | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | -.1527395 .0392232 -3.89 0.000 -.2296993 -.0757796 age | .5235536 .1390348 3.77 0.000 .2507532 .796354 agesq | -.005716 .0015705 -3.64 0.000 -.0087976 -.0026345 black | 1.072952 .1737155 6.18 0.000 .732105 1.4138 east | .2285554 .1338537 1.71 0.088 -.0340792 .4911901 northcen | .3744188 .122061 3.07 0.002 .1349228 .6139148 west | .2076398 .1676568 1.24 0.216 -.1213199 .5365995 farm | -.0770015 .1513718 -0.51 0.611 -.3740083 .2200053 othrural | -.1952451 .181551 -1.08 0.282 -.5514666 .1609764 town | .08181 .1246821 0.66 0.512 -.162829 .3264489 smcity | .2124996 .160425 1.32 0.186 -.1022706 .5272698 y74 | .2721292 .172944 1.57 0.116 -.0672045 .6114629 y76 | -.0945483 .1792324 -0.53 0.598 -.4462205 .2571239 y78 | -.0572543 .1825536 -0.31 0.754 -.415443 .3009343 y80 | -.053248 .1847175 -0.29 0.773 -.4156825 .3091865 y82 | -.4962149 .1765888 -2.81 0.005 -.8427 -.1497297 y84 | -.5213604 .1779205 -2.93 0.003 -.8704586 -.1722623 _cons | -7.241244 3.136642 -2.31 0.021 -13.39565 -1.086834 ------------------------------------------------------------------------------ Instrumented: educ Instruments: age agesq black east northcen west farm othrural town smcity y74 y76 y78 y80 y82 y84 meduc feduc ------------------------------------------------------------------------------ . qui reg kids educ age agesq black-y84 . display "The OLS estimate is " _b[educ] " (" _se[educ] ")" The OLS estimate is -.12842683 (.0183486) . //Endogeneity . reg educ meduc feduc Source | SS df MS Number of obs = 1,129 -------------+---------------------------------- F(2, 1126) = 207.06 Model | 2114.27432 2 1057.13716 Prob > F = 0.0000 Residual | 5748.84171 1,126 5.10554326 R-squared = 0.2689 -------------+---------------------------------- Adj R-squared = 0.2676 Total | 7863.11603 1,128 6.97084755 Root MSE = 2.2595 ------------------------------------------------------------------------------ educ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- meduc | .1844065 .021749 8.48 0.000 .1417333 .2270796 feduc | .2208784 .024996 8.84 0.000 .1718344 .2699225 _cons | 8.860898 .2034806 43.55 0.000 8.461654 9.260142 ------------------------------------------------------------------------------ . predict v2, res . ivreg kids (educ=meduc feduc) age agesq black-y84 v2 Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 1,129 -------------+---------------------------------- F(18, 1110) = 9.21 Model | 400.801638 18 22.2667576 Prob > F = 0.0000 Residual | 2684.70766 1,110 2.41865555 R-squared = 0.1299 -------------+---------------------------------- Adj R-squared = 0.1158 Total | 3085.5093 1,128 2.73538059 Root MSE = 1.5552 ------------------------------------------------------------------------------ kids | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | -.1507639 .0367462 -4.10 0.000 -.2228636 -.0786641 age | .5305436 .1384365 3.83 0.000 .2589168 .8021704 agesq | -.005796 .0015647 -3.70 0.000 -.0088661 -.0027259 black | 1.061535 .1747383 6.07 0.000 .7186803 1.40439 east | .2208112 .1329111 1.66 0.097 -.0399742 .4815965 northcen | .3715649 .1215229 3.06 0.002 .1331244 .6100054 west | .2044791 .1672389 1.22 0.222 -.1236609 .532619 farm | -.0651969 .1483216 -0.44 0.660 -.3562192 .2258255 othrural | -.1777856 .1767678 -1.01 0.315 -.5246223 .1690511 town | .0798824 .1247224 0.64 0.522 -.1648358 .3246006 smcity | .2099867 .1603553 1.31 0.191 -.104647 .5246204 y74 | .2719416 .1728386 1.57 0.116 -.0671855 .6110688 y76 | -.0984073 .1790925 -0.55 0.583 -.4498053 .2529906 y78 | -.0637286 .1818614 -0.35 0.726 -.4205596 .2931023 y80 | -.0651716 .1830214 -0.36 0.722 -.4242785 .2939352 y82 | -.5143435 .1728653 -2.98 0.003 -.8535231 -.1751638 y84 | -.534601 .1752043 -3.05 0.002 -.87837 -.190832 v2 | .0291597 .0415585 0.70 0.483 -.0523823 .1107017 _cons | -7.407479 3.089573 -2.40 0.017 -13.46954 -1.345417 ------------------------------------------------------------------------------ Instrumented: educ Instruments: age agesq black east northcen west farm othrural town smcity y74 y76 y78 y80 y82 y84 v2 meduc feduc ------------------------------------------------------------------------------ . display "The OLS estimate is " _b[v2] " (" _b[v2]/_se[v2] ")" The OLS estimate is .02915968 (.70165427) . *Example 15.10. Job Training and Worker Productivity . u jtrain, clear . reg chrsemp cgrant if year==1988 Source | SS df MS Number of obs = 125 -------------+---------------------------------- F(1, 123) = 79.37 Model | 18117.5987 1 18117.5987 Prob > F = 0.0000 Residual | 28077.3319 123 228.270991 R-squared = 0.3922 -------------+---------------------------------- Adj R-squared = 0.3873 Total | 46194.9306 124 372.539763 Root MSE = 15.109 ------------------------------------------------------------------------------ chrsemp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cgrant | 27.87793 3.129216 8.91 0.000 21.68384 34.07202 _cons | .5093234 1.558337 0.33 0.744 -2.57531 3.593956 ------------------------------------------------------------------------------ . ivreg clscrap (chrsemp = cgrant) if year==1988 Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 45 -------------+---------------------------------- F(1, 43) = 3.20 Model | .274951237 1 .274951237 Prob > F = 0.0808 Residual | 17.0148885 43 .395695081 R-squared = 0.0159 -------------+---------------------------------- Adj R-squared = -0.0070 Total | 17.2898397 44 .392950903 Root MSE = .62904 ------------------------------------------------------------------------------ clscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- chrsemp | -.0141532 .0079147 -1.79 0.081 -.0301148 .0018084 _cons | -.0326684 .1269512 -0.26 0.798 -.2886898 .223353 ------------------------------------------------------------------------------ Instrumented: chrsemp Instruments: cgrant ------------------------------------------------------------------------------ . ivreg clscrap chrsemp if year==1988 Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 45 -------------+---------------------------------- F(1, 43) = 2.84 Model | 1.07071245 1 1.07071245 Prob > F = 0.0993 Residual | 16.2191273 43 .377189007 R-squared = 0.0619 -------------+---------------------------------- Adj R-squared = 0.0401 Total | 17.2898397 44 .392950903 Root MSE = .61416 ------------------------------------------------------------------------------ clscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- chrsemp | -.0076007 .0045112 -1.68 0.099 -.0166984 .0014971 _cons | -.1035161 .103736 -1.00 0.324 -.3127197 .1056875 ------------------------------------------------------------------------------ (no endogenous regressors) ------------------------------------------------------------------------------ . log close name: SN log: ~Wooldridge\intro-econx\iexample15.smcl log type: smcl closed on: 17 Jan 2019, 16:10:56 -------------------------------------------------------------------------------------
Leave a Reply
Want to join the discussion?Feel free to contribute!