Introductory Econometrics – Replicating Examples
Chapter 2. Simple Regression – Examples
------------------------------------------------------------------------------------- name: SN log: Wooldridge\intro-econx\iexample2.smcl log type: smcl opened on: 5 Jan 2019, 16:59:02 ********************************************** . * Solomon Negash - Replicating Examples . * Wooldridge, Jeffery (2016). Introductory Econometrics: A Modern Approach. 6th ed. . * STATA Program, version 15.1. . * Chapter 2 - The Simple Regression Model . * Computer Exercises (Examples) . ******************** SETUP ********************* . *example2.1. N/A . *example2.2. N/A . *example2.3. CEO Salary & Return on Equity ; salary = b0 + b1roe + u . use ceosal1.dta, clear . regress salary roe Source | SS df MS Number of obs = 209 -------------+---------------------------------- F(1, 207) = 2.77 Model | 5166419.04 1 5166419.04 Prob > F = 0.0978 Residual | 386566563 207 1867471.32 R-squared = 0.0132 -------------+---------------------------------- Adj R-squared = 0.0084 Total | 391732982 208 1883331.64 Root MSE = 1366.6 ------------------------------------------------------------------------------ salary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- roe | 18.50119 11.12325 1.66 0.098 -3.428196 40.43057 _cons | 963.1913 213.2403 4.52 0.000 542.7902 1383.592 ------------------------------------------------------------------------------ . *example2.4. . u wage1.dta, clear . sum wage educ Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- wage | 526 5.896103 3.693086 .53 24.98 educ | 526 12.56274 2.769022 0 18 . reg wage educ Source | SS df MS Number of obs = 526 -------------+---------------------------------- F(1, 524) = 103.36 Model | 1179.73204 1 1179.73204 Prob > F = 0.0000 Residual | 5980.68225 524 11.4135158 R-squared = 0.1648 -------------+---------------------------------- Adj R-squared = 0.1632 Total | 7160.41429 525 13.6388844 Root MSE = 3.3784 ------------------------------------------------------------------------------ wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .5413593 .053248 10.17 0.000 .4367534 .6459651 _cons | -.9048516 .6849678 -1.32 0.187 -2.250472 .4407687 ------------------------------------------------------------------------------ . *example2.5. . u vote1.dta, clear . reg voteA shareA Source | SS df MS Number of obs = 173 -------------+---------------------------------- F(1, 171) = 1017.66 Model | 41486.2307 1 41486.2307 Prob > F = 0.0000 Residual | 6971.01783 171 40.7661862 R-squared = 0.8561 -------------+---------------------------------- Adj R-squared = 0.8553 Total | 48457.2486 172 281.728189 Root MSE = 6.3848 ------------------------------------------------------------------------------ voteA | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- shareA | .4638269 .0145397 31.90 0.000 .4351266 .4925272 _cons | 26.81221 .8872146 30.22 0.000 25.06091 28.56352 ------------------------------------------------------------------------------ . *example2.6. Table2.2 . use ceosal1.dta, clear . regress salary roe Source | SS df MS Number of obs = 209 -------------+---------------------------------- F(1, 207) = 2.77 Model | 5166419.04 1 5166419.04 Prob > F = 0.0978 Residual | 386566563 207 1867471.32 R-squared = 0.0132 -------------+---------------------------------- Adj R-squared = 0.0084 Total | 391732982 208 1883331.64 Root MSE = 1366.6 ------------------------------------------------------------------------------ salary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- roe | 18.50119 11.12325 1.66 0.098 -3.428196 40.43057 _cons | 963.1913 213.2403 4.52 0.000 542.7902 1383.592 ------------------------------------------------------------------------------ . esttab, r2 ---------------------------- (1) salary ---------------------------- roe 18.50 (1.66) _cons 963.2*** (4.52) ---------------------------- N 209 R-sq 0.013 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . predict salaryhat, xb . predict uhat, residual . list roe salary salaryhat uhat in 1/15, table separator(15) +--------------------------------------+ | roe salary salary~t uhat | |--------------------------------------| 1. | 14.1 1095 1224.058 -129.0581 | 2. | 10.9 1001 1164.854 -163.8543 | 3. | 23.5 1122 1397.969 -275.9692 | 4. | 5.9 578 1072.348 -494.3483 | 5. | 13.8 1368 1218.508 149.4923 | 6. | 20 1145 1333.215 -188.2151 | 7. | 16.4 1078 1266.611 -188.6108 | 8. | 16.3 1094 1264.761 -170.7607 | 9. | 10.5 1237 1157.454 79.5462 | 10. | 26.3 833 1449.773 -616.7725 | 11. | 25.9 567 1442.372 -875.3721 | 12. | 26.8 933 1459.023 -526.0231 | 13. | 14.8 1339 1237.009 101.9911 | 14. | 22.3 937 1375.768 -438.7678 | 15. | 56.3 2011 2004.808 6.191886 | +--------------------------------------+ . *example2.7. Wage & education. . u wage1.dta, clear . sum wage Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- wage | 526 5.896103 3.693086 .53 24.98 . qui reg wage educ . esttab, r2 ---------------------------- (1) wage ---------------------------- educ 0.541*** (10.17) _cons -0.905 (-1.32) ---------------------------- N 526 R-sq 0.165 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . display as text "if educ=12.56, then wage_hat = " as result -.90 + .54*12.56 if educ=12.56, then wage_hat = 5.8824 . *example2.8. CEO Salary - R-squared. . use ceosal1.dta, clear . qui regress salary roe . esttab, r2 ---------------------------- (1) salary ---------------------------- roe 18.50 (1.66) _cons 963.2*** (4.52) ---------------------------- N 209 R-sq 0.013 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . *example2.9 Voting outcome - R-squared. See example2.5 for details. . u vote1.dta, clear . qui reg voteA shareA . esttab, r2 ---------------------------- (1) voteA ---------------------------- shareA 0.464*** (31.90) _cons 26.81*** (30.22) ---------------------------- N 173 R-sq 0.856 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . *example2.3 in session2.4 Units of measurement & functional form . use ceosal1.dta, clear . g salardol=1000*salary . eststo: regress salardol roe Source | SS df MS Number of obs = 209 -------------+---------------------------------- F(1, 207) = 2.77 Model | 5.1664e+12 1 5.1664e+12 Prob > F = 0.0978 Residual | 3.8657e+14 207 1.8675e+12 R-squared = 0.0132 -------------+---------------------------------- Adj R-squared = 0.0084 Total | 3.9173e+14 208 1.8833e+12 Root MSE = 1.4e+06 ------------------------------------------------------------------------------ salardol | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- roe | 18501.19 11123.25 1.66 0.098 -3428.196 40430.57 _cons | 963191.3 213240.3 4.52 0.000 542790.2 1383592 ------------------------------------------------------------------------------ (est1 stored) . eststo: regress salary roe Source | SS df MS Number of obs = 209 -------------+---------------------------------- F(1, 207) = 2.77 Model | 5166419.04 1 5166419.04 Prob > F = 0.0978 Residual | 386566563 207 1867471.32 R-squared = 0.0132 -------------+---------------------------------- Adj R-squared = 0.0084 Total | 391732982 208 1883331.64 Root MSE = 1366.6 ------------------------------------------------------------------------------ salary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- roe | 18.50119 11.12325 1.66 0.098 -3.428196 40.43057 _cons | 963.1913 213.2403 4.52 0.000 542.7902 1383.592 ------------------------------------------------------------------------------ (est2 stored) . esttab, r2 -------------------------------------------- (1) (2) salardol salary -------------------------------------------- roe 18501.2 18.50 (1.66) (1.66) _cons 963191.3*** 963.2*** (4.52) (4.52) -------------------------------------------- N 209 209 R-sq 0.013 0.013 -------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . est clear . *example2.10 A log wage equation (log-lin model; semi-elasticity ) . u wage1.dta, clear . sum wage lwage educ Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- wage | 526 5.896103 3.693086 .53 24.98 lwage | 526 1.623268 .5315382 -.6348783 3.218076 educ | 526 12.56274 2.769022 0 18 . reg lwage educ Source | SS df MS Number of obs = 526 -------------+---------------------------------- F(1, 524) = 119.58 Model | 27.5606288 1 27.5606288 Prob > F = 0.0000 Residual | 120.769123 524 .230475425 R-squared = 0.1858 -------------+---------------------------------- Adj R-squared = 0.1843 Total | 148.329751 525 .28253286 Root MSE = .48008 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0827444 .0075667 10.94 0.000 .0678796 .0976091 _cons | .5837727 .0973358 6.00 0.000 .3925563 .7749891 ------------------------------------------------------------------------------ . esttab, r2 ---------------------------- (1) lwage ---------------------------- educ 0.0827*** (10.94) _cons 0.584*** (6.00) ---------------------------- N 526 R-sq 0.186 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . *example2.11. Ceo Salary & Fim Sales (log-log model; elasticity) . use ceosal1.dta, clear . regress lsalary lsales Source | SS df MS Number of obs = 209 -------------+---------------------------------- F(1, 207) = 55.30 Model | 14.0661688 1 14.0661688 Prob > F = 0.0000 Residual | 52.6559944 207 .254376785 R-squared = 0.2108 -------------+---------------------------------- Adj R-squared = 0.2070 Total | 66.7221632 208 .320779631 Root MSE = .50436 ------------------------------------------------------------------------------ lsalary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lsales | .2566717 .0345167 7.44 0.000 .1886224 .3247209 _cons | 4.821997 .2883396 16.72 0.000 4.253538 5.390455 ------------------------------------------------------------------------------ . esttab, r2 ---------------------------- (1) lsalary ---------------------------- lsales 0.257*** (7.44) _cons 4.822*** (16.72) ---------------------------- N 209 R-sq 0.211 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . *example2.12 Student math performance . u meap93.dta, clear . reg math10 lnchprg Source | SS df MS Number of obs = 408 -------------+---------------------------------- F(1, 406) = 83.77 Model | 7665.26597 1 7665.26597 Prob > F = 0.0000 Residual | 37151.9145 406 91.5071786 R-squared = 0.1710 -------------+---------------------------------- Adj R-squared = 0.1690 Total | 44817.1805 407 110.115923 Root MSE = 9.5659 ------------------------------------------------------------------------------ math10 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnchprg | -.3188643 .0348393 -9.15 0.000 -.3873523 -.2503763 _cons | 32.14271 .9975824 32.22 0.000 30.18164 34.10378 ------------------------------------------------------------------------------ . esttab, r2 ---------------------------- (1) math10 ---------------------------- lnchprg -0.319*** (-9.15) _cons 32.14*** (32.22) ---------------------------- N 408 R-sq 0.171 ---------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001 . *example2.13. N/A . log close name: SN log: Wooldridge\intro-econx\iexample2.smcl log type: smcl closed on: 5 Jan 2019, 16:59:03 -------------------------------------------------------------------------------------
Leave a Reply
Want to join the discussion?Feel free to contribute!