INTRODUCTORY ECONOMETRICS – REPLICATING EXAMPLES
Chapter 6 – Examples
------------------------------------------------------------------------------------- name: SN log: ~Wooldridge\intro-econx\iexample6.smcl log type: smcl opened on: 8 Jan 2019, 01:36:36 ********************************************** * Solomon Negash - Replicating Examples * Wooldridge (2016). Introductory Econometrics: A Modern Approach. 6th ed. * STATA Program, version 15.1. * Chapter 6 - Multiple Regression Analysis: Further Analysis * Computer Exercises (Examples) ******************** SETUP ********************* *Table6.1 Determinants of College GPA u bwght, clear eststo: qui reg bwght cigs faminc (est1 stored) eststo: qui reg bwghtlb cigs faminc (est2 stored) eststo: qui reg bwght packs faminc (est3 stored) esttab *, se r2 nostar ti("Compare to Table6.1 'Effects of Data Scaling'") Compare to Table6.1 'Effects of Data Scaling' --------------------------------------------------- (1) (2) (3) bwght bwghtlbs bwght --------------------------------------------------- cigs -0.463 -0.0290 (0.0916) (0.00572) faminc 0.0928 0.00580 0.0928 (0.0292) (0.00182) (0.0292) packs -9.268 (1.832) _cons 117.0 7.311 117.0 (1.049) (0.0656) (1.049) --------------------------------------------------- N 1388 1388 1388 R-sq 0.030 0.030 0.030 --------------------------------------------------- Standard errors in parentheses est clear *Example6.1. Effects of pollution on housing prices u hprice2, clear //Standardizing the variables foreach x of varlist price nox crime rooms dist stratio { egen z`x'= std(`x') label var z`x' "`x' - standardized" } reg zprice znox zcrime zrooms zdist zstratio Source | SS df MS Number of obs = 506 -------------+---------------------------------- F(5, 500) = 174.47 Model | 321.011232 5 64.2022464 Prob > F = 0.0000 Residual | 183.988778 500 .367977557 R-squared = 0.6357 -------------+---------------------------------- Adj R-squared = 0.6320 Total | 505.00001 505 1.00000002 Root MSE = .60661 ------------------------------------------------------------------------------ zprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- znox | -.340446 .0445411 -7.64 0.000 -.4279568 -.2529352 zcrime | -.1432828 .0307168 -4.66 0.000 -.2036327 -.0829328 zrooms | .5138878 .0300302 17.11 0.000 .454887 .5728887 zdist | -.2348385 .0430217 -5.46 0.000 -.3193642 -.1503129 zstratio | -.2702799 .0299698 -9.02 0.000 -.3291622 -.2113976 _cons | 6.61e-09 .0269672 0.00 1.000 -.0529829 .0529829 ------------------------------------------------------------------------------ //Compare the result to Example 4.5. g ldist=ln(dist) reg lprice lnox ldist rooms stratio Source | SS df MS Number of obs = 506 -------------+---------------------------------- F(4, 501) = 175.86 Model | 49.3987586 4 12.3496897 Prob > F = 0.0000 Residual | 35.1834663 501 .07022648 R-squared = 0.5840 -------------+---------------------------------- Adj R-squared = 0.5807 Total | 84.582225 505 .167489554 Root MSE = .265 ------------------------------------------------------------------------------ lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnox | -.9535388 .1167417 -8.17 0.000 -1.182902 -.7241751 ldist | -.1343395 .0431032 -3.12 0.002 -.2190247 -.0496542 rooms | .2545271 .0185303 13.74 0.000 .2181203 .2909338 stratio | -.0524511 .0058971 -8.89 0.000 -.0640372 -.040865 _cons | 11.08386 .3181113 34.84 0.000 10.45887 11.70886 ------------------------------------------------------------------------------ //Equation (6.7) reg lprice lnox rooms Source | SS df MS Number of obs = 506 -------------+---------------------------------- F(2, 503) = 265.69 Model | 43.4513652 2 21.7256826 Prob > F = 0.0000 Residual | 41.1308598 503 .081771093 R-squared = 0.5137 -------------+---------------------------------- Adj R-squared = 0.5118 Total | 84.582225 505 .167489554 Root MSE = .28596 ------------------------------------------------------------------------------ lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnox | -.7176736 .0663397 -10.82 0.000 -.8480106 -.5873366 rooms | .3059183 .0190174 16.09 0.000 .268555 .3432816 _cons | 9.233738 .1877406 49.18 0.000 8.864885 9.60259 ------------------------------------------------------------------------------ //Equation (6.12) u wage1, clear reg wage exper* Source | SS df MS Number of obs = 526 -------------+---------------------------------- F(2, 523) = 26.74 Model | 664.266927 2 332.133463 Prob > F = 0.0000 Residual | 6496.14736 523 12.4209319 R-squared = 0.0928 -------------+---------------------------------- Adj R-squared = 0.0893 Total | 7160.41429 525 13.6388844 Root MSE = 3.5243 ------------------------------------------------------------------------------ wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .2981001 .0409655 7.28 0.000 .2176229 .3785773 expersq | -.0061299 .0009025 -6.79 0.000 -.0079029 -.0043569 _cons | 3.725406 .3459392 10.77 0.000 3.045805 4.405007 ------------------------------------------------------------------------------ *Example6.2. Effects of pollution on housing prices u hprice2, clear g ldis=ln(dist) g roomsq = rooms^2 reg lprice lnox ldis rooms roomsq stratio Source | SS df MS Number of obs = 506 -------------+---------------------------------- F(5, 500) = 151.77 Model | 50.9872375 5 10.1974475 Prob > F = 0.0000 Residual | 33.5949875 500 .067189975 R-squared = 0.6028 -------------+---------------------------------- Adj R-squared = 0.5988 Total | 84.582225 505 .167489554 Root MSE = .25921 ------------------------------------------------------------------------------ lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnox | -.901682 .1146869 -7.86 0.000 -1.12701 -.6763544 ldis | -.0867814 .0432807 -2.01 0.045 -.1718159 -.001747 rooms | -.5451128 .1654542 -3.29 0.001 -.8701839 -.2200417 roomsq | .0622612 .012805 4.86 0.000 .037103 .0874194 stratio | -.0475902 .0058542 -8.13 0.000 -.059092 -.0360884 _cons | 13.38548 .5664732 23.63 0.000 12.27252 14.49844 ------------------------------------------------------------------------------ *Example6.3. Effects of attendance on final exam performance u attend, clear g priGPAsq = priGPA^2 g ACTsq = ACT^2 eststo stndfnl: qui reg stndfnl atndrte priGPA ACT priGPAsq ACTsq c.priGPA#c.atndrte estout , cells(b(nostar fmt(3)) se(par fmt(5))) stats(r2 r2_a N, fmt(%9.3f %9.3f %9.0g) > labels(R-squared Adj-R-squared)) varlabels(_cons Constant) varwidth(25) -------------------------------------- stndfnl b/se -------------------------------------- atndrte -0.007 (0.01023) priGPA -1.629 (0.48100) ACT -0.128 (0.09849) priGPAsq 0.296 (0.10105) ACTsq 0.005 (0.00218) c.priGPA#c.atndrte 0.006 (0.00432) Constant 2.050 (1.36032) -------------------------------------- R-squared 0.229 Adj-R-squared 0.222 N 680 -------------------------------------- est clear *Example6.4. CEO compensation and frim perfromance u ceosal1.dta, clear eststo salary: qui reg salary sales roe eststo lsalary: qui reg lsalary lsales roe estout , cells(b(nostar fmt(3)) se(par fmt(5))) stats(r2 r2_a N, fmt(%9.3f %9.3f %9.0g) > labels(R-squared Adj-R-squared)) varlabels(_cons Constant) varwidth(25) --------------------------------------------------- salary lsalary b/se b/se --------------------------------------------------- sales 0.016 (0.00887) roe 19.631 0.018 (11.07655) (0.00396) lsales 0.275 (0.03325) Constant 830.631 4.362 (223.90489) (0.29388) --------------------------------------------------- R-squared 0.029 0.282 Adj-R-squared 0.020 0.275 N 209 209 --------------------------------------------------- est clear *Example6.5. Confidence interval for predicted college GPA u gpa2, clear eststo regression: reg colgpa sat hsperc hsize c.hsize#c.hsize Source | SS df MS Number of obs = 4,137 -------------+---------------------------------- F(4, 4132) = 398.02 Model | 499.030504 4 124.757626 Prob > F = 0.0000 Residual | 1295.16517 4,132 .313447524 R-squared = 0.2781 -------------+---------------------------------- Adj R-squared = 0.2774 Total | 1794.19567 4,136 .433799728 Root MSE = .55986 --------------------------------------------------------------------------------- colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- sat | .0014925 .0000652 22.89 0.000 .0013646 .0016204 hsperc | -.0138558 .000561 -24.70 0.000 -.0149557 -.0127559 hsize | -.0608815 .0165012 -3.69 0.000 -.0932328 -.0285302 c.hsize#c.hsize | .0054603 .0022698 2.41 0.016 .0010102 .0099104 _cons | 1.492652 .0753414 19.81 0.000 1.344942 1.640362 --------------------------------------------------------------------------------- g sat0 = sat - 1200 g hsperc0 = hsperc - 30 g hsize0 = hsize -5 eststo prediction: reg colgpa sat0 hsperc0 hsize0 c.hsize0#c.hsize0 Source | SS df MS Number of obs = 4,137 -------------+---------------------------------- F(4, 4132) = 398.02 Model | 499.030503 4 124.757626 Prob > F = 0.0000 Residual | 1295.16517 4,132 .313447524 R-squared = 0.2781 -------------+---------------------------------- Adj R-squared = 0.2774 Total | 1794.19567 4,136 .433799728 Root MSE = .55986 ----------------------------------------------------------------------------------- colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- sat0 | .0014925 .0000652 22.89 0.000 .0013646 .0016204 hsperc0 | -.0138558 .000561 -24.70 0.000 -.0149557 -.0127559 hsize0 | -.0062785 .0086006 -0.73 0.465 -.0231403 .0105833 c.hsize0#c.hsize0 | .0054603 .0022698 2.41 0.016 .0010102 .0099104 _cons | 2.700075 .0198778 135.83 0.000 2.661104 2.739047 ----------------------------------------------------------------------------------- estout , cells(b(nostar fmt(5)) se(par fmt(5))) stats(r2 r2_a N, fmt(%9.3f %9.3f %9.0g) > labels(R-squared Adj-R-squared)) varlabels(_cons Constant) varwidth(25) --------------------------------------------------- regression prediction b/se b/se --------------------------------------------------- sat 0.00149 (0.00007) hsperc -0.01386 (0.00056) hsize -0.06088 (0.01650) c.hsize#c.hsize 0.00546 (0.00227) sat0 0.00149 (0.00007) hsperc0 -0.01386 (0.00056) hsize0 -0.00628 (0.00860) c.hsize0#c.hsize0 0.00546 (0.00227) Constant 1.49265 2.70008 (0.07534) (0.01988) --------------------------------------------------- R-squared 0.278 0.278 Adj-R-squared 0.277 0.277 N 4137 4137 --------------------------------------------------- est clear *Example6.6. Confidence Interval for Future Collage GPA u gpa2, clear reg colgpa sat hsperc hsize c.hsize#c.hsize Source | SS df MS Number of obs = 4,137 -------------+---------------------------------- F(4, 4132) = 398.02 Model | 499.030504 4 124.757626 Prob > F = 0.0000 Residual | 1295.16517 4,132 .313447524 R-squared = 0.2781 -------------+---------------------------------- Adj R-squared = 0.2774 Total | 1794.19567 4,136 .433799728 Root MSE = .55986 --------------------------------------------------------------------------------- colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- sat | .0014925 .0000652 22.89 0.000 .0013646 .0016204 hsperc | -.0138558 .000561 -24.70 0.000 -.0149557 -.0127559 hsize | -.0608815 .0165012 -3.69 0.000 -.0932328 -.0285302 c.hsize#c.hsize | .0054603 .0022698 2.41 0.016 .0010102 .0099104 _cons | 1.492652 .0753414 19.81 0.000 1.344942 1.640362 --------------------------------------------------------------------------------- margins, at(sat = 1200 hsperc = 30 hsize = 5 ) Adjusted predictions Number of obs = 4,137 Model VCE : OLS Expression : Linear prediction, predict() at : sat = 1200 hsperc = 30 hsize = 5 ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 2.700075 .0198778 135.83 0.000 2.661104 2.739047 ------------------------------------------------------------------------------ display as text "Root MSE = " e(rmse) Root MSE = .55986384 predict u, res gen u2 = u^2 mean u2 Mean estimation Number of obs = 4,137 -------------------------------------------------------------- | Mean Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ u2 | .3130687 .0078993 .2975818 .3285556 -------------------------------------------------------------- display sqrt(.313) 55946403 //The 95% CI display as text "Lower Bound = " 2.7 - 1.96*.56 Lower Bound = 1.6024 display as text "Upper Bound = " 2.7 + 1.96*.56 Upper Bound = 3.7976 *Example6.7. Predicting CEO log(salary) u ceosal2.dta, clear *Step 1 reg lsalary lsales lmktval ceoten Source | SS df MS Number of obs = 177 -------------+---------------------------------- F(3, 173) = 26.91 Model | 20.5672434 3 6.85574779 Prob > F = 0.0000 Residual | 44.0789697 173 .254791732 R-squared = 0.3182 -------------+---------------------------------- Adj R-squared = 0.3063 Total | 64.6462131 176 .367308029 Root MSE = .50477 ------------------------------------------------------------------------------ lsalary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lsales | .1628545 .0392421 4.15 0.000 .0853995 .2403094 lmktval | .109243 .0495947 2.20 0.029 .0113545 .2071315 ceoten | .0117054 .0053261 2.20 0.029 .001193 .0222178 _cons | 4.503795 .2572344 17.51 0.000 3.996073 5.011517 ------------------------------------------------------------------------------ predict lsalaryhat, xb predict uhat, residual *Step 2 g euhat=exp(uhat) mean euhat //The Duan smearing estimate (alpha_hat_0) Mean estimation Number of obs = 177 -------------------------------------------------------------- | Mean Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ euhat | 1.135661 .0523938 1.03226 1.239062 -------------------------------------------------------------- g mhat=exp(lsalaryhat) reg salary mhat,noc // The coef. as in equation 46.44 Source | SS df MS Number of obs = 177 -------------+---------------------------------- F(1, 176) = 562.39 Model | 147352711 1 147352711 Prob > F = 0.0000 Residual | 46113901 176 262010.801 R-squared = 0.7616 -------------+---------------------------------- Adj R-squared = 0.7603 Total | 193466612 177 1093031.71 Root MSE = 511.87 ------------------------------------------------------------------------------ salary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- mhat | 1.116857 .0470953 23.71 0.000 1.023912 1.209801 ------------------------------------------------------------------------------ *Step 3 qui reg lsalary lsales lmktval ceoten display _b[_cons]+_b[lsales]*log(5000)+_b[lmktval]*log(10000)+_b[ceoten]*10 7.0140771 *Step 4 qui reg salary mhat, noc display 1.136*exp(7.013) //or 1262.0761 display 1.117*exp(7.013) 1240.9674 *Example6.8. PRedicting CEO salary corr mhat salary, (obs=177) | mhat salary -------------+------------------ mhat | 1.0000 salary | 0.4930 1.0000 u ceosal2.dta, clear reg salary sales mktval ceoten Source | SS df MS Number of obs = 177 -------------+---------------------------------- F(3, 173) = 14.53 Model | 12230632.6 3 4076877.52 Prob > F = 0.0000 Residual | 48535332.2 173 280551.053 R-squared = 0.2013 -------------+---------------------------------- Adj R-squared = 0.1874 Total | 60765964.7 176 345261.163 Root MSE = 529.67 ------------------------------------------------------------------------------ salary | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- sales | .0190191 .0100561 1.89 0.060 -.0008294 .0388676 mktval | .0234003 .0094826 2.47 0.015 .0046839 .0421167 ceoten | 12.70337 5.618052 2.26 0.025 1.614616 23.79211 _cons | 613.4361 65.23685 9.40 0.000 484.6735 742.1987 ------------------------------------------------------------------------------ log close name: SN log: ~Wooldridge\intro-econx\iexample6.smcl log type: smcl closed on: 8 Jan 2019, 01:36:37 -------------------------------------------------------------------------------------
Leave a Reply
Want to join the discussion?Feel free to contribute!