INTRODUCTORY ECONOMETRICS – REPLICATING EXAMPLES
Chapter 17. Limited Dependent Variable – Examples
------------------------------------------------------------------------------------- name: SN log: ~Wooldridge\intro-econx\iexample18.smcl log type: smcl opened on: 18 Jan 2019, 20:45:49 . ********************************************** . * Solomon Negash - Replicating Examples . * Wooldridge (2016). Introductory Econometrics: A Modern Approach. 6th ed. . * STATA Program, version 15.1. . * CHAPTER 17 Limited Dependent Variable Models and Sample Selection Corrections . * Computer Exercises (Examples) . ******************** SETUP ********************* . *Example 17.1. Married Women’s Labor Force Participation . u mroz, clear . eststo LPM_OLS: reg inlf nwifeinc educ exper* age kidslt6 kidsge6 Source | SS df MS Number of obs = 753 -------------+---------------------------------- F(7, 745) = 38.22 Model | 48.8080578 7 6.97257969 Prob > F = 0.0000 Residual | 135.919698 745 .182442547 R-squared = 0.2642 -------------+---------------------------------- Adj R-squared = 0.2573 Total | 184.727756 752 .245648611 Root MSE = .42713 ------------------------------------------------------------------------------ inlf | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- nwifeinc | -.0034052 .0014485 -2.35 0.019 -.0062488 -.0005616 educ | .0379953 .007376 5.15 0.000 .023515 .0524756 exper | .0394924 .0056727 6.96 0.000 .0283561 .0506287 expersq | -.0005963 .0001848 -3.23 0.001 -.0009591 -.0002335 age | -.0160908 .0024847 -6.48 0.000 -.0209686 -.011213 kidslt6 | -.2618105 .0335058 -7.81 0.000 -.3275875 -.1960335 kidsge6 | .0130122 .013196 0.99 0.324 -.0128935 .0389179 _cons | .5855192 .154178 3.80 0.000 .2828442 .8881943 ------------------------------------------------------------------------------ . eststo Logit_MLE: logit inlf nwifeinc educ exper* age kidslt6 kidsge6 Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -402.38502 Iteration 2: log likelihood = -401.76569 Iteration 3: log likelihood = -401.76515 Iteration 4: log likelihood = -401.76515 Logistic regression Number of obs = 753 LR chi2(7) = 226.22 Prob > chi2 = 0.0000 Log likelihood = -401.76515 Pseudo R2 = 0.2197 ------------------------------------------------------------------------------ inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- nwifeinc | -.0213452 .0084214 -2.53 0.011 -.0378509 -.0048394 educ | .2211704 .0434396 5.09 0.000 .1360303 .3063105 exper | .2058695 .0320569 6.42 0.000 .1430391 .2686999 expersq | -.0031541 .0010161 -3.10 0.002 -.0051456 -.0011626 age | -.0880244 .014573 -6.04 0.000 -.116587 -.0594618 kidslt6 | -1.443354 .2035849 -7.09 0.000 -1.842373 -1.044335 kidsge6 | .0601122 .0747897 0.80 0.422 -.086473 .2066974 _cons | .4254524 .8603697 0.49 0.621 -1.260841 2.111746 ------------------------------------------------------------------------------ . margins, dydx( educ) Average marginal effects Number of obs = 753 Model VCE : OIM Expression : Pr(inlf), predict() dy/dx w.r.t. : educ ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0394965 .0072947 5.41 0.000 .0251992 .0537939 ------------------------------------------------------------------------------ . eststo Probit_MLE: probit inlf nwifeinc educ exper* age kidslt6 kidsge6 Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -402.06651 Iteration 2: log likelihood = -401.30273 Iteration 3: log likelihood = -401.30219 Iteration 4: log likelihood = -401.30219 Probit regression Number of obs = 753 LR chi2(7) = 227.14 Prob > chi2 = 0.0000 Log likelihood = -401.30219 Pseudo R2 = 0.2206 ------------------------------------------------------------------------------ inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378 educ | .1309047 .0252542 5.18 0.000 .0814074 .180402 exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311 expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111 age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376 kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029 kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179 _cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901 ------------------------------------------------------------------------------ . margins, dydx( educ) Average marginal effects Number of obs = 753 Model VCE : OIM Expression : Pr(inlf), predict() dy/dx w.r.t. : educ ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .0393703 .0072216 5.45 0.000 .0252161 .0535244 ------------------------------------------------------------------------------ . estout, cells(b(nostar fmt(4)) se(par fmt(4))) stats(N, fmt(%9.0g) labels(Observatiions /// varlabels(_cons constant) varwidth(10) ti("Table 17.1 LPM, Logit, and Probit /// Estimates of Labor Force Participation: (inlf)") Table 17.1 LPM, Logit, and Probit Estimates of Labor Force Participation: (inlf) ------------------------------------------------- LPM_OLS Logit_MLE Probit_MLE b/se b/se b/se ------------------------------------------------- main nwifeinc -0.0034 -0.0213 -0.0120 (0.0014) (0.0084) (0.0048) educ 0.0380 0.2212 0.1309 (0.0074) (0.0434) (0.0253) exper 0.0395 0.2059 0.1233 (0.0057) (0.0321) (0.0187) expersq -0.0006 -0.0032 -0.0019 (0.0002) (0.0010) (0.0006) age -0.0161 -0.0880 -0.0529 (0.0025) (0.0146) (0.0085) kidslt6 -0.2618 -1.4434 -0.8683 (0.0335) (0.2036) (0.1185) kidsge6 0.0130 0.0601 0.0360 (0.0132) (0.0748) (0.0435) constant 0.5855 0.4255 0.2701 (0.1542) (0.8604) (0.5086) ------------------------------------------------- Observat~s 753 753 753 ------------------------------------------------- . est clear . eststo LPM: qui reg inlf nwifeinc educ exper* age kidslt6 kidsge6 . qui logit inlf nwifeinc educ exper* age kidslt6 kidsge6 . eststo Logit: qui margins, dydx( nwifeinc educ exper* age kidslt6 kidsge6) post . qui probit inlf nwifeinc educ exper* age kidslt6 kidsge6 . eststo Probit: qui margins, dydx( nwifeinc educ exper* age kidslt6 kidsge6) post . estout, cells(b(nostar fmt(4)) se(par fmt(4))) drop(_cons expersq) varwidth(10) /// ti("Table 17.2 Average Partial Effects for the Labor Force Participation Models: (inlf)") Table 17.2 Average Partial Effects for the Labor Force Participation Models: (inlf) ------------------------------------------------- LPM Logit Probit b/se b/se b/se ------------------------------------------------- nwifeinc -0.0034 -0.0038 -0.0036 (0.0014) (0.0015) (0.0014) educ 0.0380 0.0395 0.0394 (0.0074) (0.0073) (0.0072) exper 0.0395 0.0368 0.0371 (0.0057) (0.0052) (0.0052) age -0.0161 -0.0157 -0.0159 (0.0025) (0.0024) (0.0024) kidslt6 -0.2618 -0.2578 -0.2612 (0.0335) (0.0319) (0.0319) kidsge6 0.0130 0.0107 0.0108 (0.0132) (0.0133) (0.0131) ------------------------------------------------- . est clear . *Example 17.2. Married Women’s Annual Labor Supply . u mroz, clear . eststo Linear_OLS: reg hours nwifeinc educ exper* age kidslt6 kidsge6 Source | SS df MS Number of obs = 753 -------------+---------------------------------- F(7, 745) = 38.50 Model | 151647606 7 21663943.7 Prob > F = 0.0000 Residual | 419262118 745 562767.944 R-squared = 0.2656 -------------+---------------------------------- Adj R-squared = 0.2587 Total | 570909724 752 759188.463 Root MSE = 750.18 ------------------------------------------------------------------------------ hours | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- nwifeinc | -3.446636 2.544 -1.35 0.176 -8.440898 1.547626 educ | 28.76112 12.95459 2.22 0.027 3.329283 54.19297 exper | 65.67251 9.962983 6.59 0.000 46.11365 85.23138 expersq | -.7004939 .3245501 -2.16 0.031 -1.337635 -.0633524 age | -30.51163 4.363868 -6.99 0.000 -39.07858 -21.94469 kidslt6 | -442.0899 58.8466 -7.51 0.000 -557.6148 -326.565 kidsge6 | -32.77923 23.17622 -1.41 0.158 -78.2777 12.71924 _cons | 1330.482 270.7846 4.91 0.000 798.8906 1862.074 ------------------------------------------------------------------------------ . eststo Linear: qui margins, dydx( nwifeinc educ exper* age kidslt6 kidsge6) post . eststo Tobit_MLE: tobit hours nwifeinc educ exper* age kidslt6 kidsge6, ll(0) Refining starting values: Grid node 0: log likelihood = -3961.1577 Fitting full model: Iteration 0: log likelihood = -3961.1577 Iteration 1: log likelihood = -3836.8928 Iteration 2: log likelihood = -3819.2637 Iteration 3: log likelihood = -3819.0948 Iteration 4: log likelihood = -3819.0946 Tobit regression Number of obs = 753 Uncensored = 428 Limits: lower = 0 Left-censored = 325 upper = +inf Right-censored = 0 LR chi2(7) = 271.59 Prob > chi2 = 0.0000 Log likelihood = -3819.0946 Pseudo R2 = 0.0343 ------------------------------------------------------------------------------ hours | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- nwifeinc | -8.814226 4.459089 -1.98 0.048 -17.56808 -.0603706 educ | 80.64541 21.58318 3.74 0.000 38.27441 123.0164 exper | 131.564 17.27935 7.61 0.000 97.64211 165.486 expersq | -1.864153 .5376606 -3.47 0.001 -2.919661 -.8086455 age | -54.40491 7.418483 -7.33 0.000 -68.9685 -39.84133 kidslt6 | -894.0202 111.8777 -7.99 0.000 -1113.653 -674.3875 kidsge6 | -16.21805 38.6413 -0.42 0.675 -92.07668 59.64057 _cons | 965.3068 446.4351 2.16 0.031 88.88827 1841.725 -------------+---------------------------------------------------------------- var(e.hours)| 1258927 93304.48 1088458 1456093 ------------------------------------------------------------------------------ . eststo Tobit: qui margins, dydx( nwifeinc educ exper* age kidslt6 kidsge6) post pred(ystar(0,.)) . estout Linear_OLS Tobit_MLE, cells(b(nostar fmt(4)) se(par fmt(4))) stats(N, fmt(%9.0g) /// labels(Observations)) varlabels(_cons constant) varwidth(10) ti("Table 17.3 OLS /// and Tobit Estimation of Annual Hours Worked: (hours)") Table 17.3 OLS and Tobit Estimation of Annual Hours Worked: (hours) ------------------------------------ Linear_OLS Tobit_MLE b/se b/se ------------------------------------ main nwifeinc -3.4466 -8.8142 (2.5440) (4.4591) educ 28.7611 80.6454 (12.9546) (21.5832) exper 65.6725 131.5640 (9.9630) (17.2793) expersq -0.7005 -1.8642 (0.3246) (0.5377) age -30.5116 -54.4049 (4.3639) (7.4185) kidslt6 -442.0899 -894.0202 (58.8466) (111.8777) kidsge6 -32.7792 -16.2181 (23.1762) (38.6413) constant 1330.4824 965.3068 (270.7846) (446.4351) ------------------------------------ Observat~s 753 753 ------------------------------------ . estout Linear Tobit, cells(b(nostar fmt(4)) se(par fmt(4))) varwidth(10) ti("Table /// 17.4 Average Partial Effects for the Hours Worked Models: (hours)") Table 17.4 Average Partial Effects for the Hours Worked Models: (hours) ------------------------------------ Linear Tobit b/se b/se ------------------------------------ nwifeinc -3.4466 -5.1886 (2.5440) (2.6214) educ 28.7611 47.4731 (12.9546) (12.6214) exper 65.6725 77.4470 (9.9630) (9.9976) expersq -0.7005 -1.0974 (0.3246) (0.3156) age -30.5116 -32.0262 (4.3639) (4.2921) kidslt6 -442.0899 -526.2776 (58.8466) (64.7062) kidsge6 -32.7792 -9.5470 (23.1762) (22.7522) ------------------------------------ . est clear . *Example 17.3. Poisson Regression for Number of Arrests . u crime1, clear . eststo Linear: qui reg narr86 pcnv avgsen tottime ptime86 qemp86 inc86 black hispan born60 . eststo Poisson: qui poisson narr86 pcnv avgsen tottime ptime86 qemp86 inc86 black hispan born60 . estout, cells(b(nostar fmt(4)) se(par fmt(4))) stats(r2 rmse ll, fmt(%9.0g %9.0g %9.0g) /// labels(R-Squared rmse Log-Likelihood)) varlabels(_cons constant) varwidth(10) /// ti("Table 17.5 Determinants of Number of Arrests for Young Men: (narr86)") Table 17.5 Determinants of Number of Arrests for Young Men: (narr86) ------------------------------------ Linear Poisson b/se b/se ------------------------------------ main pcnv -0.1319 -0.4016 (0.0404) (0.0850) avgsen -0.0113 -0.0238 (0.0122) (0.0199) tottime 0.0121 0.0245 (0.0094) (0.0148) ptime86 -0.0409 -0.0986 (0.0088) (0.0207) qemp86 -0.0513 -0.0380 (0.0145) (0.0290) inc86 -0.0015 -0.0081 (0.0003) (0.0010) black 0.3270 0.6608 (0.0454) (0.0738) hispan 0.1938 0.4998 (0.0397) (0.0739) born60 -0.0225 -0.0510 (0.0333) (0.0641) constant 0.5766 -0.5996 (0.0379) (0.0673) ------------------------------------ R-Squared .0724764 rmse .8287301 Log-Like~d -3349.678 -2248.761 ------------------------------------ . est clear . *Example 17.4. Duration of Recidivism . u recid, clear . cnreg ldurat workprg priors tserved felon alcohol drugs black married educ age, censor(cens) Censored-normal regression Number of obs = 1,445 LR chi2(10) = 166.74 Prob > chi2 = 0.0000 Log likelihood = -1597.059 Pseudo R2 = 0.0496 ------------------------------------------------------------------------------ ldurat | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- workprg | -.0625715 .1200369 -0.52 0.602 -.2980382 .1728951 priors | -.1372529 .0214587 -6.40 0.000 -.1793466 -.0951592 tserved | -.0193305 .0029779 -6.49 0.000 -.0251721 -.013489 felon | .4439947 .1450865 3.06 0.002 .1593903 .7285991 alcohol | -.6349092 .1442166 -4.40 0.000 -.9178072 -.3520113 drugs | -.2981602 .1327355 -2.25 0.025 -.5585367 -.0377837 black | -.5427179 .1174428 -4.62 0.000 -.7730958 -.31234 married | .3406837 .1398431 2.44 0.015 .066365 .6150024 educ | .0229196 .0253974 0.90 0.367 -.0269004 .0727395 age | .0039103 .0006062 6.45 0.000 .0027211 .0050994 _cons | 4.099386 .347535 11.80 0.000 3.417655 4.781117 -------------+---------------------------------------------------------------- /sigma | 1.81047 .0623022 1.688257 1.932683 ------------------------------------------------------------------------------ 0 left-censored observations 552 uncensored observations 893 right-censored observations . *Example 17.5. Wage Offer Equation for Married Women . u mroz, clear . eststo OLS: reg lwage educ exper* Source | SS df MS Number of obs = 428 -------------+---------------------------------- F(3, 424) = 26.29 Model | 35.0222967 3 11.6740989 Prob > F = 0.0000 Residual | 188.305144 424 .444115906 R-squared = 0.1568 -------------+---------------------------------- Adj R-squared = 0.1509 Total | 223.327441 427 .523015084 Root MSE = .66642 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ | .1074896 .0141465 7.60 0.000 .0796837 .1352956 exper | .0415665 .0131752 3.15 0.002 .0156697 .0674633 expersq | -.0008112 .0003932 -2.06 0.040 -.0015841 -.0000382 _cons | -.5220406 .1986321 -2.63 0.009 -.9124667 -.1316144 ------------------------------------------------------------------------------ . eststo Heckit: heckman lwage educ exper*, twostep select(inlf = educ exper* nwifeinc age kidslt6 kidsge6) Heckman selection model -- two-step estimates Number of obs = 753 (regression model with sample selection) Selected = 428 Nonselected = 325 Wald chi2(3) = 51.53 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lwage | educ | .1090655 .015523 7.03 0.000 .0786411 .13949 exper | .0438873 .0162611 2.70 0.007 .0120163 .0757584 expersq | -.0008591 .0004389 -1.96 0.050 -.0017194 1.15e-06 _cons | -.5781032 .3050062 -1.90 0.058 -1.175904 .019698 -------------+---------------------------------------------------------------- inlf | educ | .1309047 .0252542 5.18 0.000 .0814074 .180402 exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311 expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111 nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378 age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376 kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029 kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179 _cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901 -------------+---------------------------------------------------------------- /mills | lambda | .0322619 .1336246 0.24 0.809 -.2296376 .2941613 -------------+---------------------------------------------------------------- rho | 0.04861 sigma | .66362875 ------------------------------------------------------------------------------ . estout, cells(b(nostar fmt(4)) se(par fmt(4))) varlabels(_cons constant) varwidth(10) /// ti("Table 17.7 Wage Offer Equation for Married Women: (lwage)") Table 17.7 Wage Offer Equation for Married Women: (lwage) ------------------------------------ OLS Heckit b/se b/se ------------------------------------ main educ 0.1075 0.1091 (0.0141) (0.0155) exper 0.0416 0.0439 (0.0132) (0.0163) expersq -0.0008 -0.0009 (0.0004) (0.0004) constant -0.5220 -0.5781 (0.1986) (0.3050) ------------------------------------ inlf educ 0.1309 (0.0253) exper 0.1233 (0.0187) expersq -0.0019 (0.0006) nwifeinc -0.0120 (0.0048) age -0.0529 (0.0085) kidslt6 -0.8683 (0.1185) kidsge6 0.0360 (0.0435) constant 0.2701 (0.5086) ------------------------------------ . est clear . log close name: SN log: ~Wooldridge\intro-econx\iexample16.smcl log type: smcl closed on: 18 Jan 2019, 20:45:51 -------------------------------------------------------------------------------------
Leave a Reply
Want to join the discussion?Feel free to contribute!