Python for Introductory Econometrics: Chap 12

Python for Introductory Econometrics

Chapter 12. Serial Correlation and Heteroskedasticity in Time Series Regressions

https://www.solomonegash.com/

In [1]:
import numpy as np
import pandas as pd
import scipy as sp
import scipy.stats as ss

import statsmodels
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.iolib.summary2 import summary_col

from wooldridge import *

Example 12.1. Testing for AR(1) Serial Correlation in the Phillips Curve

In [2]:
df = dataWoo("phillips")
df = df[(df['year']<1997)]

df['uhat1'] = smf.ols('df.inf ~ unem + 1', data=df).fit().resid
print(smf.ols('uhat1 ~ uhat1.shift(1)', data=df).fit().summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  uhat1   R-squared:                       0.346
Model:                            OLS   Adj. R-squared:                  0.332
Method:                 Least Squares   F-statistic:                     24.34
Date:                Tue, 21 Apr 2020   Prob (F-statistic):           1.10e-05
Time:                        20:43:07   Log-Likelihood:                -110.88
No. Observations:                  48   AIC:                             225.8
Df Residuals:                      46   BIC:                             229.5
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==================================================================================
                     coef    std err          t      P>|t|      [0.025      0.975]
----------------------------------------------------------------------------------
Intercept         -0.1134      0.359     -0.316      0.754      -0.837       0.610
uhat1.shift(1)     0.5730      0.116      4.934      0.000       0.339       0.807
==============================================================================
Omnibus:                        6.807   Durbin-Watson:                   1.354
Prob(Omnibus):                  0.033   Jarque-Bera (JB):               10.853
Skew:                           0.158   Prob(JB):                      0.00440
Kurtosis:                       5.308   Cond. No.                         3.09
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [3]:
df['uhat2'] = smf.ols('df.cinf ~ unem', data=df).fit().resid
print(smf.ols('uhat2 ~ uhat2.shift(1)', data=df).fit().summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  uhat2   R-squared:                       0.002
Model:                            OLS   Adj. R-squared:                 -0.020
Method:                 Least Squares   F-statistic:                   0.08254
Date:                Tue, 21 Apr 2020   Prob (F-statistic):              0.775
Time:                        20:43:07   Log-Likelihood:                -99.620
No. Observations:                  47   AIC:                             203.2
Df Residuals:                      45   BIC:                             206.9
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==================================================================================
                     coef    std err          t      P>|t|      [0.025      0.975]
----------------------------------------------------------------------------------
Intercept          0.1942      0.300      0.646      0.521      -0.411       0.799
uhat2.shift(1)    -0.0356      0.124     -0.287      0.775      -0.285       0.214
==============================================================================
Omnibus:                       10.035   Durbin-Watson:                   1.845
Prob(Omnibus):                  0.007   Jarque-Bera (JB):               21.015
Skew:                          -0.348   Prob(JB):                     2.73e-05
Kurtosis:                       6.201   Cond. No.                         2.42
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Example 12.2. Testing for AR(1) Serial Correlation in the Minimum Wage Equation

In [4]:
df = dataWoo("prminwge")

df['uhat'] = smf.ols('lprepop ~ lmincov + lprgnp + lusgnp + t', data=df).fit().resid
AR1c = smf.ols('uhat ~  lmincov + lprgnp + lusgnp + t + uhat.shift(1)' , data=df).fit()
AR1s  = smf.ols('uhat ~ uhat.shift(1)', data=df).fit()

print(summary_col([AR1c, AR1s],stars=True,float_format='%0.3f',
                  model_names=['AR1c\n(b/se)','AR1s\n(b/se)'],
                 info_dict={'N':lambda x: "{0:d}".format(int(x.nobs)),
                             'R2':lambda x: "{:.3f}".format(x.rsquared), 
                           'Adj.R2':lambda x: "{:.3f}".format(x.rsquared_adj)}))
==============================
                AR1c     AR1s 
               (b/se)   (b/se)
------------------------------
Intercept     -0.851   -0.001 
              (1.093)  (0.004)
lmincov       0.038           
              (0.035)         
lprgnp        -0.078          
              (0.071)         
lusgnp        0.204           
              (0.195)         
t             -0.003          
              (0.004)         
uhat.shift(1) 0.481*** 0.417**
              (0.166)  (0.159)
N             37       37     
R2            0.242    0.165  
Adj.R2        0.120    0.141  
==============================
Standard errors in
parentheses.
* p<.1, ** p<.05, ***p<.01

Example 12.3. Testing for AR(3) Serial Correlation

In [5]:
df = dataWoo("barium")
df['u'] = smf.ols('lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6', data=df).fit().resid
AR3 = smf.ols('u ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6 + u.shift(1) + u.shift(2) + u.shift(3) + 1', data = df).fit()
print(AR3.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      u   R-squared:                       0.116
Model:                            OLS   Adj. R-squared:                  0.048
Method:                 Least Squares   F-statistic:                     1.719
Date:                Tue, 21 Apr 2020   Prob (F-statistic):             0.0920
Time:                        20:43:07   Log-Likelihood:                -104.56
No. Observations:                 128   AIC:                             229.1
Df Residuals:                     118   BIC:                             257.6
Df Model:                           9                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept    -14.3692     20.656     -0.696      0.488     -55.273      26.535
lchempi       -0.1432      0.472     -0.303      0.762      -1.078       0.792
lgas           0.6233      0.886      0.704      0.483      -1.131       2.378
lrtwex         0.1787      0.391      0.457      0.649      -0.596       0.953
befile6       -0.0859      0.251     -0.342      0.733      -0.583       0.411
affile6       -0.1221      0.255     -0.479      0.632      -0.626       0.382
afdec6        -0.0668      0.274     -0.244      0.808      -0.610       0.476
u.shift(1)     0.2215      0.092      2.417      0.017       0.040       0.403
u.shift(2)     0.1340      0.092      1.454      0.148      -0.048       0.317
u.shift(3)     0.1255      0.091      1.378      0.171      -0.055       0.306
==============================================================================
Omnibus:                        6.375   Durbin-Watson:                   1.947
Prob(Omnibus):                  0.041   Jarque-Bera (JB):                5.978
Skew:                          -0.444   Prob(JB):                       0.0503
Kurtosis:                       3.576   Cond. No.                     9.78e+03
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 9.78e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
In [6]:
hypotheses = '(u.shift(1) = u.shift(2) = u.shift(3) = 0)'
f_test = AR3.f_test(hypotheses)
print(f_test)
<F test: F=array([[5.12291442]]), p=0.002289781725887554, df_denom=118, df_num=3>

Example 12.4. Prais-Winsten Estimation in the Event Study

In [7]:
df = dataWoo("barium")
OLS = smf.ols('lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6', data=df).fit()
In [8]:
def ols_ar1(model,rho,drop1=True):
    x = model.model.exog
    y = model.model.endog
    ystar = y[1:]-rho*y[:-1]
    xstar = x[1:,]-rho*x[:-1,]
    if drop1 == False:
        ystar = np.append(np.sqrt(1-rho**2)*y[0],ystar)
        xstar = np.append([np.sqrt(1-rho**2)*x[0,]],xstar,axis=0)
    model_ar1 = sm.OLS(ystar,xstar).fit()
    return(model_ar1)
In [9]:
def OLSAR1(model,drop1=True):
    x = model.model.exog
    y = model.model.endog
    e = y-x@model.params
    e1 = e[:-1]; e0 = e[1:]
    rho0 = np.dot(e1,e[1:])/np.dot(e1,e1)
    rdiff = 1.0
    while(rdiff>1.0e-5):
        model1 = ols_ar1(model,rho0,drop1)
        e = y - (x @ model1.params)
        e1 = e[:-1]; e0 = e[1:]
        rho1 = np.dot(e1,e[1:])/np.dot(e1,e1)
        rdiff = np.sqrt((rho1-rho0)**2)
        rho0 = rho1
        print('Rho = ', rho0)
    model1 = ols_ar1(model,rho0,drop1)
    return(model1)
In [10]:
ar1_pw = OLSAR1(OLS ,drop1=False)
print(ar1_pw.summary())
Rho =  0.29103573218659945
Rho =  0.293002159149283
Rho =  0.29319585917068214
Rho =  0.2932149681976127
Rho =  0.2932168536348193
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.984
Model:                            OLS   Adj. R-squared:                  0.983
Method:                 Least Squares   F-statistic:                     1096.
Date:                Tue, 21 Apr 2020   Prob (F-statistic):          2.99e-108
Time:                        20:43:07   Log-Likelihood:                -109.41
No. Observations:                 131   AIC:                             232.8
Df Residuals:                     124   BIC:                             252.9
Df Model:                           7                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
x1           -37.0777     22.778     -1.628      0.106     -82.162       8.007
x2             2.9409      0.633      4.647      0.000       1.688       4.194
x3             1.0464      0.977      1.071      0.286      -0.888       2.981
x4             1.1328      0.507      2.236      0.027       0.130       2.136
x5            -0.0165      0.319     -0.052      0.959      -0.649       0.616
x6            -0.0332      0.322     -0.103      0.918      -0.670       0.604
x7            -0.5768      0.342     -1.687      0.094      -1.254       0.100
==============================================================================
Omnibus:                        9.254   Durbin-Watson:                   2.087
Prob(Omnibus):                  0.010   Jarque-Bera (JB):                9.875
Skew:                          -0.508   Prob(JB):                      0.00717
Kurtosis:                       3.881   Cond. No.                     7.69e+03
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 7.69e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Example 12.5. Static Phillips Curve

In [11]:
df = dataWoo("phillips")
df = df[(df['year']<1997)]
ols = smf.ols('df.inf ~ unem', data=df).fit()
print(ols.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                 df.inf   R-squared:                       0.053
Model:                            OLS   Adj. R-squared:                  0.033
Method:                 Least Squares   F-statistic:                     2.616
Date:                Tue, 21 Apr 2020   Prob (F-statistic):              0.112
Time:                        20:43:07   Log-Likelihood:                -124.43
No. Observations:                  49   AIC:                             252.9
Df Residuals:                      47   BIC:                             256.6
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      1.4236      1.719      0.828      0.412      -2.035       4.882
unem           0.4676      0.289      1.617      0.112      -0.114       1.049
==============================================================================
Omnibus:                        8.905   Durbin-Watson:                   0.803
Prob(Omnibus):                  0.012   Jarque-Bera (JB):                8.336
Skew:                           0.979   Prob(JB):                       0.0155
Kurtosis:                       3.502   Cond. No.                         23.5
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [12]:
ar1_pw = OLSAR1(ols ,drop1=False)
print(ar1_pw.summary())
Rho =  0.7306596839389278
Rho =  0.7719454382272319
Rho =  0.779218049730014
Rho =  0.7803441605388693
Rho =  0.7805144547092179
Rho =  0.7805401123896685
Rho =  0.7805439759940055
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.241
Model:                            OLS   Adj. R-squared:                  0.208
Method:                 Least Squares   F-statistic:                     7.446
Date:                Tue, 21 Apr 2020   Prob (F-statistic):            0.00155
Time:                        20:43:07   Log-Likelihood:                -108.62
No. Observations:                  49   AIC:                             221.2
Df Residuals:                      47   BIC:                             225.0
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
x1             8.2959      2.231      3.718      0.001       3.807      12.785
x2            -0.7157      0.313     -2.283      0.027      -1.346      -0.085
==============================================================================
Omnibus:                        7.441   Durbin-Watson:                   1.910
Prob(Omnibus):                  0.024   Jarque-Bera (JB):               11.678
Skew:                          -0.280   Prob(JB):                      0.00291
Kurtosis:                       5.325   Cond. No.                         11.7
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Example 12.6. Differencing the Interest Rate Equation

In [13]:
df = dataWoo("intdef")
def1 = df['def']
ureg = smf.ols('i3 ~ df.inf + def1', data=df).fit()
df['u'] = ureg.resid
AR1u = smf.ols('u ~ u.shift(1)', data=df).fit()
ereg = smf.ols('ci3 ~ df.cinf + cdef', data=df).fit()
df['e'] = ereg.resid
AR1e = smf.ols('e ~ e.shift(1)', data=df).fit()

print(summary_col([AR1u, AR1e, ureg, ereg],stars=True,float_format='%0.3f',
                  model_names=['AR1u\n(b/se)','AR1e\n(b/se)', 'ureg\n(b/se)','ereg\n(b/se)'],
                 info_dict={'N':lambda x: "{0:d}".format(int(x.nobs)),
                             'R2':lambda x: "{:.3f}".format(x.rsquared), 
                           'Adj.R2':lambda x: "{:.3f}".format(x.rsquared_adj)}))
============================================
             AR1u     AR1e    ureg     ereg 
            (b/se)   (b/se)  (b/se)   (b/se)
--------------------------------------------
Intercept  0.015    -0.041  1.733*** 0.042  
           (0.190)  (0.166) (0.432)  (0.171)
cdef                                 -0.181 
                                     (0.148)
def1                        0.513***        
                            (0.118)         
df.cinf                              0.149  
                                     (0.092)
df.inf                      0.606***        
                            (0.082)         
e.shift(1)          0.072                   
                    (0.134)                 
u.shift(1) 0.623***                         
           (0.110)                          
N          55       54      56       55     
R2         0.377    0.005   0.602    0.176  
Adj.R2     0.366    -0.014  0.587    0.145  
============================================
Standard errors in parentheses.
* p<.1, ** p<.05, ***p<.01

Example 12.7. The Puerto Rican Minimum Wage

In [14]:
df = dataWoo("prminwge")
OLS2 =smf.ols('lprepop ~ lmincov + lprgnp + lusgnp + t', data=df).fit()
Newey = OLS2.get_robustcov_results(cov_type='HAC',maxlags=1)

print(summary_col([OLS, Newey],stars=True,float_format='%0.3f',
                  model_names=['OLS\n(b/se)','Newey\n(b/se)'],
                 info_dict={'N':lambda x: "{0:d}".format(int(x.nobs)),
                             'R2':lambda x: "{:.3f}".format(x.rsquared), 
                           'Adj.R2':lambda x: "{:.3f}".format(x.rsquared_adj)}))
============================
            OLS      Newey  
           (b/se)    (b/se) 
----------------------------
Intercept -17.803  -6.663***
          (21.045) (1.375)  
afdec6    -0.565*           
          (0.286)           
affile6   -0.032            
          (0.264)           
befile6   0.060             
          (0.261)           
lchempi   3.117***          
          (0.479)           
lgas      0.196             
          (0.907)           
lmincov            -0.212***
                   (0.042)  
lprgnp             0.285*** 
                   (0.093)  
lrtwex    0.983**           
          (0.400)           
lusgnp             0.486*   
                   (0.253)  
t                  -0.027***
                   (0.005)  
N         131      38       
R2        0.305    0.889    
Adj.R2    0.271    0.876    
============================
Standard errors in
parentheses.
* p<.1, ** p<.05, ***p<.01
In [15]:
print(OLSAR1(OLS2 ,drop1=False).summary()) #PW
Rho =  0.5324697530893964
Rho =  0.5796268387567702
Rho =  0.5999046986035584
Rho =  0.6086113183872525
Rho =  0.6123431100391696
Rho =  0.6139413953891834
Rho =  0.6146257121155214
Rho =  0.6149186696925641
Rho =  0.6150440788116458
Rho =  0.6150977626620652
Rho =  0.6151207428725443
Rho =  0.6151305798698419
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.995
Model:                            OLS   Adj. R-squared:                  0.994
Method:                 Least Squares   F-statistic:                     1336.
Date:                Tue, 21 Apr 2020   Prob (F-statistic):           4.55e-37
Time:                        20:43:08   Log-Likelihood:                 83.937
No. Observations:                  38   AIC:                            -157.9
Df Residuals:                      33   BIC:                            -149.7
Df Model:                           5                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
x1            -4.6529      1.376     -3.380      0.002      -7.453      -1.852
x2            -0.1477      0.046     -3.222      0.003      -0.241      -0.054
x3             0.2514      0.116      2.159      0.038       0.014       0.488
x4             0.2557      0.232      1.103      0.278      -0.216       0.727
x5            -0.0205      0.006     -3.501      0.001      -0.032      -0.009
==============================================================================
Omnibus:                        3.313   Durbin-Watson:                   1.736
Prob(Omnibus):                  0.191   Jarque-Bera (JB):                2.453
Skew:                           0.618   Prob(JB):                        0.293
Kurtosis:                       3.150   Cond. No.                     3.00e+03
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large,  3e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Example 12.8. Heteroskedasticity and the Efficient Markets Hypothesis

In [16]:
df = dataWoo("nyse")
reg1 = smf.ols('df[("return")] ~ return_1', data=df).fit()
print(reg1.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:         df[("return")]   R-squared:                       0.003
Model:                            OLS   Adj. R-squared:                  0.002
Method:                 Least Squares   F-statistic:                     2.399
Date:                Tue, 21 Apr 2020   Prob (F-statistic):              0.122
Time:                        20:43:08   Log-Likelihood:                -1491.2
No. Observations:                 689   AIC:                             2986.
Df Residuals:                     687   BIC:                             2996.
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      0.1796      0.081      2.225      0.026       0.021       0.338
return_1       0.0589      0.038      1.549      0.122      -0.016       0.134
==============================================================================
Omnibus:                      114.206   Durbin-Watson:                   1.997
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              646.991
Skew:                          -0.598   Prob(JB):                    3.22e-141
Kurtosis:                       7.594   Cond. No.                         2.14
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [17]:
df['u2'] = np.square(reg1.resid)
print(smf.ols('u2 ~ return_1', data=df).fit().summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                     u2   R-squared:                       0.042
Model:                            OLS   Adj. R-squared:                  0.041
Method:                 Least Squares   F-statistic:                     30.05
Date:                Tue, 21 Apr 2020   Prob (F-statistic):           5.90e-08
Time:                        20:43:08   Log-Likelihood:                -2639.9
No. Observations:                 689   AIC:                             5284.
Df Residuals:                     687   BIC:                             5293.
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      4.6565      0.428     10.888      0.000       3.817       5.496
return_1      -1.1041      0.201     -5.482      0.000      -1.500      -0.709
==============================================================================
Omnibus:                     1296.711   Durbin-Watson:                   1.443
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          1627670.115
Skew:                          12.811   Prob(JB):                         0.00
Kurtosis:                     239.728   Cond. No.                         2.14
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Example 12.9. ARCH in Stock Returns

In [18]:
df = dataWoo("nyse")
df['u2']= np.square(smf.ols('df[("return")] ~ return_1', data=df).fit().resid)
print(smf.ols('u2 ~ u2.shift(1)', data=df).fit().summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                     u2   R-squared:                       0.114
Model:                            OLS   Adj. R-squared:                  0.112
Method:                 Least Squares   F-statistic:                     87.92
Date:                Tue, 21 Apr 2020   Prob (F-statistic):           9.71e-20
Time:                        20:43:08   Log-Likelihood:                -2609.7
No. Observations:                 688   AIC:                             5223.
Df Residuals:                     686   BIC:                             5233.
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
===============================================================================
                  coef    std err          t      P>|t|      [0.025      0.975]
-------------------------------------------------------------------------------
Intercept       2.9474      0.440      6.695      0.000       2.083       3.812
u2.shift(1)     0.3371      0.036      9.377      0.000       0.266       0.408
==============================================================================
Omnibus:                     1343.910   Durbin-Watson:                   2.028
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2176433.255
Skew:                          13.807   Prob(JB):                         0.00
Kurtosis:                     277.152   Cond. No.                         13.2
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [19]:
df['u']= smf.ols('df[("return")] ~ return_1', data=df).fit().resid
print(smf.ols('u ~ u.shift(1)', data=df).fit().summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      u   R-squared:                       0.000
Model:                            OLS   Adj. R-squared:                 -0.001
Method:                 Least Squares   F-statistic:                  0.001354
Date:                Tue, 21 Apr 2020   Prob (F-statistic):              0.971
Time:                        20:43:08   Log-Likelihood:                -1489.5
No. Observations:                 688   AIC:                             2983.
Df Residuals:                     686   BIC:                             2992.
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept     -0.0012      0.081     -0.015      0.988      -0.159       0.157
u.shift(1)     0.0014      0.038      0.037      0.971      -0.074       0.076
==============================================================================
Omnibus:                      113.368   Durbin-Watson:                   2.000
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              640.382
Skew:                          -0.594   Prob(JB):                    8.76e-140
Kurtosis:                       7.575   Cond. No.                         2.11
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.